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1. Introduction

The conjectured duality between string and gauge theories represents one of the major

breakthroughs in theoretical high energy physics research for the past decade [1 – 3]. How-

ever, as common for most dualities, the exact analytic information for the two dual theories

are usually only available in the complementary regions of their coupling space, namely

the duality is of a ‘weak/strong’ type. For example in AdS/CFT, on the gauge side, the

’t Hooft coupling λ is sufficiently small, whereas on the string side, λ has to be large for

ignoring the quantum corrections (in α′ sense). This feature renders it a very difficult task

to explicitly prove the equivalence of the two theories for their entire coupling space.

On the other hand, when certain other parameters (“quantum numbers”) beside λ

become large, the structures of the two theories usually simplify, and explicit tests for the

duality can become available. The pioneering work by Berenstein, Maldacena and Nas-

tase (BMN) [4] is a classic example where the angular momentum (or “spin”) J of the
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string state becomes large and it allows us to test the AdS/CFT as a realization of the

gauge/string duality in the full stringy sense. Moreover, such large quantum numbers usu-

ally allow us to perform certain semi-classical calculations, where the quantum corrections

are usually suppressed [5, 6].

The recent emergence of integrable structures in both N = 4 SYM and IIB string

theory in AdS5 × S5 took these ideas further. Began with the remarkable observation

made in [7] by Minahan and Zarembo, the problem of computing the one-loop anoma-

lous dimensions of “long” single trace gauge invariant operators in N = 4 SYM can

be rewritten to the diagonalization of certain integrable spin chain Hamiltonians. More

specifically, this involves solving a set of Bethe ansätz equations, and in so-called “scal-

ing” (or “thermodynamic”) limit, where the number of sites of the spin chain becomes

large, the problem further translates into the well-known Riemann-Hilbert problem [8]. In

parallel, it was realized that for the semi-classical strings carrying one or more large an-

gular momenta and propogating in AdS5 × S5, the α′-corrections to their energies are

suppressed at one-loop in derivative expansion [9] (See [10, 11] for comprehensive re-

views).

Moreover, the energy expression for the semi-classical string, when expanded in effec-

tive coupling λ/J2, has the required analyticity for it to be identified with the perturbative

expansion for the anomalous dimension of the dual gauge theory operator. The expansion

coefficients from the independent gauge and string theoretic calculations showed striking

non-trivial agreements for both near-BPS (BMN) and far-from-BPS (Frolov-Tseytlin) sec-

tors. The beautiful story that followed firmly established the integrable structures in both

N = 4 SYM and IIB string in AdS5 × S5 [12]–[23], and opened up a new fertile testing

ground for AdS/CFT correspondence.

To be more detailed, one usually seeks the solitonic solutions to the classical string

sigma model on AdS5 × S5 or certain subspaces of it, and certain rotating string ansätze

are usually required, the sigma model equations of motion usually simplify into those of

classical Neumann or more general Neumann-Rosochatius integrable systems under these

ansätze [19]. The so-called “folded” and “circular” solutions of Neumann system are two

different types of semi-classical strings which extend and rotate in the bulk, their energies

and angular momenta can be extracted from elliptic integrals in general [20, 21]. Sometimes

the folded and circular strings are combined to be called the “elliptic” solutions to Neumann

integrable system. Remarkably, the folded and circular string solutions, with distinct target

space topologies, respectively correspond to the so-called “double contour” and “imaginary”

Bethe roots distributions of the corresponding spin-chain [8, 20, 21]! Not only the usual

agreement of the string energy with the anomalous dimension, but also the higher conserved

charges derived from Neumann integrable system via Bäcklund transform were reproduced

from the resolvent of the corresponding spin-chain [21].

Complementary to the explicit Bethe ansätz techniques for spin chains and the con-

struction of rotating strings in the curved background, where one usually make full use

of the integrabilities, another line of approach was developed from the work by Kruczen-

ski [27]. Here one can compare the spin chain and string sigma model directly at the level

of the effective actions, without using the integrabilities. The agreements between the
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so-called “coherent state” action for the spin-chain with the string sigma model action in

certain limit would then also imply the match between the particular solutions for the spin

chain Bethe equations and the sigma model equations of motion.

Understanding the possible correspondence between spin-chain/spinning-string and

extend the applications of integrabilities in the less supersymmetric set-up are the main fo-

cuses of this paper. While there are many possible SUSY-preserving deformations to N = 4

SYM, the specific case of our interests is the one developed by Leigh and Strassler [30],

the corresponding supergravity dual has recently been discovered in an elegant paper by

Lunin and Maldacena [31]. What makes Leigh-Strassler deformation special is that it is a

continuous, N = 1 SUSY-preserving, exactly marginal deformation of the maximally super-

symmetric theory, the resultant theory is superconformal for all values of gauge coupling,

and most importantly, posesses a weakly coupled regime for the perturbative calculations

to be allowed. The deformation parameter is usually denoted as β which in general can be

complex, however, we shall only be concerned with real β and denote it as γ instead in this

note. On the string sigma model side, the simple solution generating techniques introduced

in [31], which involves sequence of T-duality transformations and shifts of angular coor-

dinates (subsequently known as “TsT-transformation” [32]), have produced various new

smooth supergravity backgrounds corresponding to multi-parameter deformations of AdS

backgrounds [33].

The pioneering work in understanding the integrabilities in Leigh-Strassler theory or

equivalently Lunin-Maldacena background was done in [32, 34] (For some earlier work,

see [35, 36]), where various techniques used for the maximally supersymmetric theory were

extended and generalized. There have subsequently been further interesting related work

appearing in literature [37]–[41]. In [38], following [34], the authors performed an explicit

check of the spinning-string/spin-chain correspondence in Lunin-Maldacena background for

particular examples. The precise string energy was reproduced from the double contour

solution for the “twisted” Bethe ansätz equations, this gave the one-loop anomalous dimen-

sion for the operator of the form Tr(ΦJ1

1 ΦJ2

2 ) and confirmed some independent observations

made in [34].

In this note, one of the main purposes is to show the spinning string solutions found

in [29] resulting from the Neumann-Rosochatius system are indeed realized on the Lunin-

Maldacena backgrounds, and again provide two kinds of solitonic solutions with two spins.

One of them has been obtained in [38], where it was viewed as a perturbation away from the

usual two-spin folded string solution in the undeformed background. However we explore

the same class of states/operators as [34] in this note and the solutions are not necessarily

regarded as perturbations from the undeformed cases. Here our stance is that the string

solutions proposed in this note in general reduce to the ones in [29] in the vanishing-γ limit,

and we do not assume them to be directly reduce to the two spin “circular” and “folded”

solutions of the Neumann systems. We also explore the relationship between different semi-

classical string solutions in the Lunin-Maldacena background, as well as the connection

between different Bethe root distributions for the corresponding twisted spin chain.

To emphasize more on the correspondence between the spin-chain and spinning string

in the deformed cases, we first adopt a different approach from [38], instead we will use the
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Landau-Lifshitz sigma model approach as in [27, 28], and show the equivalence between

the coherent state action of twisted spin chain and the fast-string limit of sigma model

action in Lunin-Maldacena background. This part overlaps with the materials presented

in [34], however we decide to keep it for completeness as well as being a good entry route

for establishing the correspondence.

While folded and circular string in the undeformed background are elliptic solutions of

the Neumann system, solving the string equations of motion in the deformed background,

one usually has to modify the ansätz and introduce extra spatial dependence for the U(1)

variables, the equations of motion then reduce to those of Neumann-Rosochatius system

in general. We show that, for special ratio of winding and oscillation numbers, our semi-

classical solutions can be shown to reduce to their Neumann counterparts in the undeformed

background. However, in general, our solutions should be relate to those of Neumann-

Rosochatius system in the undeformed background as we mentioned earlier. Moreover, we

establish the relationship between the “folded” and “circular” strings, demonstrating how

an analytic continuation allows us to derive the energy expression for one from the other.

In the twisted spin chain analysis, we propose explicit ansätze of Bethe root distribu-

tions for each of the two different semi-classical string solutions in the Lunin-Maldacena

background, complement the analysis in [38]. Moreover, the analytic continuation can also

be used in deriving the energy for the deformed imaginary distribution from the deformed

double contour solutions. Once again, we obtain striking match between the deformed

circular string energy and the one-loop anomalous dimension calculated from twisted the

spin-chain with the deformed imaginary Bethe roots distribution.

This note is organized as follows. In section 2, we first briefly review the Leigh-Strassler

deformation of N = 4 SYM and the dual Lunin-Maldacena background, the equivalence

between the coherent state path integral of the twisted spin-chain Hamiltonian and the fast-

string limit of string sigma model is then presented. Section 3 is devoted to two explicit

semi-classical string solutions with two spins in the Lunin-Maldacena background, using

the action derived from section 2. In section 4, we present the detailed twisted spin-chain

analysis partly based on the results in [34, 38]. We also propose ansätz for the outlines

of Bethe strings in the scaling limit. We present our summary and outlook in section 5.

In appendix A, our conventions for the complete elliptic integrals and some useful integral

formulae are listed. Appendix B contains some key formulae for the twisted spin-chain

analysis and a sketch of the Riemann-Hilbert problem involved.

2. The agreement at the level of Landau-Lifshitz actions

The agreement between the coherent state path integral for the twisted spin chain associ-

ated with the Leigh-Strassler theory and the effective action for the deformed SU(2) sector

of the string theory on Lunin-Maldacena background was shown in [34], where the calcula-

tion was performed for general complex deformation parameter. In this section, we begin

with a brief review on Leigh-Strassler theory and Lunin-Maldacena background, followed

by an overview of the aforementioned agreement, the aim here is to make this paper more
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self-contained, and highlight the correspondence between spin-chain and spinning string in

the deformed set-up.

2.1 Brief review on deformed theories and coherent state action for twisted

spin chain

It is well-known that N = 4 SYM in four dimensions is a superconformal field theory with

the complexified coupling constant τ = 4πi
g2
YM

+ θ
2π parameterizing a whole family of theories

with sixteen supercharges. The SL(2, Z) electric-magnetic duality transformation acts on

τ and relates different theories on the fixed line. In addition to τ , Leigh and Strassler

considered the further two N = 1 SUSY-preserving, exactly marginal deformations of

N = 4 SYM, given by O1 = h1Tr(Φ1{Φ2,Φ3}) and O2 = h2Tr(Φ3
1 + Φ3

2 + Φ3
3), where Φi

(i = 1, 2, 3) are three chiral scalars in the N = 4 vector multiplet written in N = 1 language.

The two complex exactly marginal couplings h1 and h2, along with τ now parametrize the

whole family of N = 1 superconformal field theories.

We are interested in the so-called β-deformation in this paper, which corresponds to

setting h2 = 0, so that up to rescaling, the resultant N = 1 superconformal field theory

has the superpotential of the form

Wβ = κTr
(
eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

)
, (2.1)

with κ and β being complex in general. However, we shall restrict our attention to real β,

which we will thereafter denote it as γ instead in this paper. The γ-deformation preserves

the U(1) × U(1) × U(1) Cartan subalgebra of the SU(4) R-symmetry of N = 4 SYM. The

linear combination of these three U(1) gives rise to the U(1)R symmetry and the global

U(1) × U(1) symmetry of the resultant N = 1 theory. One should also note that the

SL(2, Z) invariance of N = 4 SYM also extends to γ-deformed theory, relating different

theories on the fixed plane [42].

As we are mainly concerned with the anomalous dimensions for the class of operators of

the form Tr (ΦJ1

1 ΦJ2

2 ) with J1, J2 and L ≡ J1 + J2 large, this particular subsector is known

to be closed under one-loop renormalization, we shall therefore focus on the interaction

given by

Vγ = Tr
∣∣Φ1Φ2 − e−2πiγΦ2Φ1

∣∣2 . (2.2)

For more detailed discussion of the gauge invariant operators in Leigh-Strassler theory, we

refer readers to [34, 38].

The supergravity background dual to the γ-deformation has recently been found in [31],

where the U(1) × U(1) global symmetry was exploited in generating the new background.

More specifically, considering the relation between the global symmetry of N = 4 SYM

and the resultant N = 1 γ-deformed theory, the two torus associated with the U(1)×U(1)

symmetry should present in the undeformed background AdS5×S5 and be preserved under

the deformation. At the level of supergravity, the SL(2, R) group associated with the two

torus acts on the torus parameter, and allows us to generate a nontrivial NS-NS B-field. As

the result, the background gets deformed by the non-trivial field strength. The action of the

SL(2, R) can also be decomposed into a sequence of T-duality transformations and shift
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of angular coordinates, referred to as “TsT-transformation” in [32], and there has been

many applications for this technique in the literature [33] to generate various deformed

backgrounds.

By considering the relevant Feynman diagrams derived from (2.2), the one-loop dilata-

tion operator for the SU(2)γ sector of the γ-deformed theory can be shown to be identical

to the following Hamiltonian of a ferromagnetic XXZ spin chain (without parity invari-

ance) [34]:

Hγ =
L∑

l=1

Hl,l+1
γ , (2.3)

with the nearest-neighbor Hamiltonian density for the link l-(l + 1),

Hl,l+1
γ =

λ

16π2

[(
1l ⊗ 1l+1 − σz

l ⊗ σz
l+1

)
− 1

2

(
e−2πiγσ+

l ⊗ σ−
l+1 + e2πiγσ−

l ⊗ σ+
l+1

)]

=
λ

16π2

[
(1l ⊗ 1l+1 − ~σl ⊗ ~σl+1) + (1 − cos (2πγ))

(
σx

l ⊗ σx
l+1 + σy

l ⊗ σy
l+1

)

+ sin (2πγ)
(
σx

l ⊗ σy
l+1 − σy

l ⊗ σx
l+1

) ]
. (2.4)

Here ~σl =
(
σx

l , σy
l , σz

l

)
are Pauli matrices at site l and σ±

l ≡ σx
l ± iσy

l . Turing off γ, we see

the spin chain Hamiltonian for the SU(2) sector of the original N = 4 SYM is recovered:

Hγ=0 =
λ

16π2

L∑

l=1

[1l ⊗ 1l+1 − ~σl ⊗ ~σl+1] . (2.5)

Following [27, 34, 43], let us perform a so-called “coherent state path integral” to

obtain an effective action. First we consider the path integral for one spin, i.e., for one site

in the chain. A coherent state |n〉l at site l is defined as

|nl〉 ≡ |n(θl, φl)〉 ≡ e−iθl(sinφl σx−cos φl σy)/2 |0〉 , (2.6)

where |0〉 is the highest weight state of the spin-1
2 representation. The coherent state is

defined to have the following remarkable properties: First, the expectation value of Pauli

matrices in a coherent state (2.6) gives an unit three-vector parametrized by θ and φ, i.e.,

~nl ≡ 〈nl|~σ |nl〉 = (sin θl cos φl, sin θl sin φl, cos θl) . (2.7)

The “North Pole” of the three-sphere would be represented as ~n0 ≡ (0, 0, 1). Second, the

inner product of two coherent states |n1〉 and |n2〉 is given by

〈n1|n2〉 =
(

1+~n1·~n2

2

)1/2
eiA(~n1,~n2,~n0) , (2.8)

where A denotes the oriented area of the spherical triangle with vertices at ~n1, ~n2 and ~n0.

When performing the coherent state path integral, the factor containing ~n1 · ~n2 does not

contribute to the final expression, and the rest eiA(~n1,~n2,~n0) produces the following so-called

“Wess-Zumino” term,

SWZ[~nl] =

∫
Al =

∫ 1

0
dρ

∫
dt ~nl(t, ρ) · [∂t~nl(t, ρ) × ∂ρ~nl(t, ρ)] . (2.9)
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Here ~n(t, ρ) (0 ≤ ρ ≤ 1) is an extension of ~n(t) defined such that ~n(t, 0) ≡ ~n(t) and

~n(t, 1) ≡ ~n0. Note that, as we are considering a classical solution, the Wess-Zumino term

can be partially integrated to give a ρ-independent expression like ∂tφ cos θ, which turns

out to be identical to the undeformed case, i.e., the Wess-Zumino term is not affected by

the deformation.

The total action is the sum of the Wess-Zumino term and the expectation value of the

γ-deformed Hamiltonian in the coherent states,

S[~nl] =
1

2
SWZ[~nl] +

∫
dt 〈nl|Hγ |nl〉 . (2.10)

In the scaling limit where λ/L2 and γL are fixed finite but L is large, the expectation

values in (2.10) can be evaluated using

(1 − cos (2πγ)) 〈nl|
(
σx

l ⊗ σx
l+1 + σy

l ⊗ σy
l+1

)
|nl+1〉 ∼ (2πγ)2 · sin2 θ ,

sin (2πγ) 〈nl|
(
σx

l ⊗ σy
l+1 − σy

l ⊗ σx
l+1

)
|nl+1〉 ∼ (2πγ) · φ′ sin2 θ · 2π

L ,

〈nl| (1l ⊗ 1l+1 − ~σl ⊗ ~σl+1) |nl+1〉 ∼ 1
2

(
θ′2 + φ′2 sin2 θ

)
·
(

2π
L

)2
,

where we defined ~n(σ̂) = (sin θ(σ̂) cos φ(σ̂), sin θ(σ̂) sin φ(σ̂), cos θ(σ̂)) with the identifica-

tion ~n(2πl
L ) ≡ ~nl, and the prime ( ′ ) denotes a derivative with respect to such defined σ̂.

Plugging these into (2.10), we arrive at the following effective action,

Seff =

L∑

l=1

S[~nl] =
L

2π

∫ 2π

0
dσ̂ S[~n(σ̂)]

=
L

4π

∫ 2π

0
dσ̂

∫
dt ∂tφ cos θ − λ

16πL

∫ 2π

0
dσ̂

∫
dt

[
θ′2 +

(
φ′ + γJ

)2
sin2 θ

]
,

(2.11)

which turns out to be an anisotropic Landau-Lifshitz action [34]. We will derive the same

expression (2.11) on the string sigma model side in the next subsection.

2.2 Large-spin limit of spinning strings on Rt × S3
γ

We shall consider a spinning string solution in the supergravity background dual to the

γ (∈ R)-deformed N = 4 SYM theory. Let us first review some relevant aspects of the

undeformed case. The metric of Rt × S3
(
⊂ AdS5 × S5

)
subspace can be parametrized as

ds2
Rt×S3 = −dt2 + |dξ1|2 + |dξ2|2 , (2.12)

where t is the AdS-time, and the complex coordinates ξj (j = 1, 2) are defined by four real

embedding coordinates of S3, XM (M = 1, . . . , 4), as ξ1 = X1+iX2 and ξ2 = X3+iX4 with∑4
M=1 X2

M =
∑2

j=1 |ξj|2 = 1. When we consider spinning string solutions, it is useful to

introduce the following parametrization with global coordinates, ξj = rje
iϕj (0 ≤ ϕj < 2π)

with
∑

j=1,2 r2
j = 1. Then the Polyakov action for the string which stays at the center of

the AdS5 and rotating on the five-sphere takes the form,

SRt×S3 = −
√

λ

2

∫
dτ

∫
dσ

2π

{
γαβ

[
−∂αt∂βt + ∂αξj∂βξ∗j + Λ

(
ξjξ

∗
j − 1

)]}
(2.13)

– 7 –



J
H
E
P
0
2
(
2
0
0
6
)
0
5
4

= −
√

λ

2

∫
dτ

∫
dσ

2π

{
γαβ

[
−∂αt∂βt + ∂αrj∂βrj + r2

j ∂αϕj∂βϕj + Λ
(
r2
j − 1

)]}

Here
√

λ = R2/α′, with R being the radius of the AdS5×S5, and Λ is a Lagrange multiplier

ensuring the sigma model constraint. We take the standard conformal gauge, γαβ =

diag(−1,+1). Then the Virasoro constraints are given by

0 = − (∂τ t)
2 + ∂τξj∂τ ξ∗j + ∂σξj∂σξ∗j and 0 = ∂τ ξj∂σξ∗j . (2.14)

We are interested in the semi-classical string states with two spins on the deformed

S3 part, which we will denote as S3
γ , of the Lunin-Maldacena background. The trick to

generate the supergravity background dual to the γ-deformed N = 4 SYM is established

in [31], known as a “TsT-transformation”. The recipe is made up of the following three

steps: (i) Perform a T-duality transformation with respect to one of the U(1) isometries,

say ϕ1. (ii) Shift another U(1) isometry variable ϕ2 as ϕ2 → ϕ2+γ̂ϕ1 with a real parameter

γ̂. (iii) T-dualize back on ϕ1. Applying this TsT-transformation, the deformed background

is then given by

SRt×S3
γ

= −
√

λ

2

∫
dτ

∫
dσ

2π

{
γαβ

[
−∂αt∂βt + ∂αrj∂βrj + Gr2

j ∂αϕj∂βϕj + Λ
(
r2
j − 1

)]

− 2εαβ γ̂Gr2
1r

2
2∂αr1∂βr2 + Λ

(
r2
j − 1

) }
(2.15)

with the γ̂-dependent factor G =
(
1 + γ̂2r2

1r
2
2

)−1
. The εαβ is the antisymmetric tensor with

the signature ετσ = 1, and the deformation parameter γ̂ is related to the parameter γ in

the SYM side as γ̂ =
√

λγ. Now let us set r1 = cos ψ and r2 = sin ψ with 0 ≤ ψ ≤ π/2, and

define new angle variables by ζ ≡ ϕ1+ϕ2

2 and η ≡ ϕ1−ϕ2

2 . In terms of these angles, the three-

sphere can be parametrized by Uje
iζ (j = 1, 2), where U1 = cos ψ eiη and U2 = sinψ e−iη

are CP
1 coordinates. Note that t and ζ are “fast” variables that have no counterparts in

gauge theory side, they should therefore be gauged away through appropriate constraints

so that the sigma model action reduces to the one written in terms of only the “slow”

variables ψ and η. The γ-deformed Lagrangian then takes the form

LRt×S3
γ

= −
√

λ

2

{
γαβ [−∂αt∂βt + ∂αψ∂βψ + G (∂αζ∂βζ + ∂αη∂βη) + 2 cos (2ψ) ∂αζ∂βη]

− γ̂G sin2 (2ψ) εαβ∂αζ∂βη
}

(2.16)

As usual, we gauge-fix the AdS-time as t = κτ , which solves the equation of motion ∂2t = 0.

We make one more change of variables as u ≡ ζ − t so that ∂τu behaves as κ−1 + O(
κ−3

)
.

Then Virasoro constraints are written as

0 = κ2 + ψ̇2 + ψ′2 + G
[
−κ2 + u̇2 + u′2η̇2 + η′2 + 2κu̇ + 2cos (2ψ)

(
κη̇ + u̇η̇ + u′η′

)]
,

(2.17)

0 = ψ̇ψ′ + G
[
u̇u′ + η̇η′ + 2κu′ + 2cos (2ψ)

(
κη′ + u̇η′ + η̇u′

)]
. (2.18)

Here the dots (˙) and the primes ( ′ ) denote the derivatives with respect to the worldsheet

time- (τ) and the space- (σ) coordinate. To get the string solutions whose energy behaves
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as E ∼ J + . . . in the large-spin limit J → ∞, it is needed for rescaling the worldsheet

time variable and taking a special limit, and selecting out the sector we are interested in.

Following the original paper [27], we adopt the following limit:

κ → ∞ , Ẋ → 0 , κẊ : fixed , X ′ : fixed for X = ψ, u, η . (2.19)

Note that, when taking the limit (2.19) with γ̂J/
√

λ fixed finite, the Virasoro constraints

(2.14) become identical to the ones for the undeformed case. To match the string action

with the effective action of gauge side, it is needed to use these reduced Virasoro constraints

and also remove the total derivative term. Further we should change variables such that

−2η 7→ φ (0 ≤ φ < 2π) and 2ψ 7→ θ (0 ≤ θ < π), and rescale the worldsheet variables as

τ̃ = τ/κ and σ̃ =
√

λκσ/J , the action finally takes the form (using the relation γ̂ =
√

λγ),

SRt×S3
γ

=
J

4π

∫
dτ̃dσ̃ φ̇ cos θ − λ

16πJ

∫
dτ̃dσ̃

[
θ′2 +

(
φ′ + γJ

)2
sin2 θ

]
. (2.20)

Here we have redefined the notations of dots and primes so that ˙ = ∂eτ and ′ = ∂eσ. This

is the same Landau-Lifshitz effective action as we saw in the gauge theory side, eq. (2.11),

under the identifications J ≡ L, τ̃ ≡ t and σ̃ ≡ σ̂.

We should note that the procedures we took in this subsection are, despite its simplicity,

not applicable for higher loops in λ. Instead we should take the 2d T-dual along ζ(σ) and

introduce the T-dualized field ζ̃(σ), then gauge-fix as ζ̃(σ) = Jσ/
√

λ just as was done

in [34]. For more details, see [27, 28, 34].

3. Elliptic solutions in SU(2)γ sector

In this section we present explicit semi-classical string solutions in the Lunin-Maldacena

background of the folded and circular types by imposing appropriate ansätz on the reduced

action obtained from the Landau-Lifshitz approach. They turn out to coincide precisely

with the ones derived from more conventional approach used in [38]. We shall explain

carefully the topologies of the semi-classical strings in Lunin-Maldacena background, com-

pare and contrast them with their undeformed counterparts, and calculate their energy

expressions for the comparison with the twisted spin chain analysis.

3.1 The topology of semi-classical strings

To obtain spinning strings moving in the S3
γ with large-spin, let us set a rotating string

ansätz. The equations of motion deduced from the Lagrangian (2.20) are given by

for θ , 0 = φ̇ sin θ +
λ

2J2

[
θ′′ − sin θ cos θ

(
φ′ + γJ

)2
]

, (3.1)

for φ , 0 = θ̇ sin θ +
λ

2J2

[(
φ′ + γJ

)
sin2 θ

]′
. (3.2)

To obtain an elliptic solution we are interested in, the following ansätz is suitable:

θ = θ(σ̂) , φ = wt + h(σ̂) . (3.3)
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This is the same ansätz considered in [29] as a generalization of a more popular folded

string with no extension in the ϕi-directions, and can be found in literatures as “spherical

oscillator” system, e.g. [44]. The presence of the σ̂-dependent field h(σ̂) in (3.3) is necessary

to ensure the equations of motion for ϕi is satisfied. Under the (3.3), the equation of

motion (3.2) implies (φ′ + γJ) sin2 θ is independent of worldsheet coordinates, and thus we

can set that

A ≡
(
φ′ + γJ

)
sin2 θ (const.) . (3.4)

Plugging this definition, the equation of motion (3.1) reduces to

θ′′ = A2 cos θ

sin3 θ
− 1

2
B sin θ with B ≡ 16π2w

λ
, (3.5)

here we can easily integrate this and choose the integration constant C such that

θ′2 = C + B cos θ − A2

sin2 θ
. (3.6)

This is the equation that governs the motion of the semi-classical strings, notice that the

familiar elliptic solutions of the Neumann system corresponds to case of vanishing A.

To proceed, it is convenient to introduce a new parameter

y ≡ sin2 θ

2
, 0 ≤ y ≤ 1 , (3.7)

so that the governing equation (3.6) can be re-written into the following form

y′2 = 2B (y+ − y) (y0 − y) (y − y−) ≡ 2Bf(y) . (3.8)

Here y0 and y± are the three roots of f(y) = 0 defined such that

y+ + y0 + y− =
C + 3B

2B
, y+y0 + y0y− + y−y+ =

C + B

2B
, y+y0y− =

A2

8B
. (3.9)

Notice that equations in (3.9) are invariant under the permutations of y+, y0 and y−, such

symmetry also appears in spin chain analysis as the freedom in exchanging the end points

of the Bethe strings. However, for the right hand side of (3.8) to remain non-negative, we

are only allowed to exchange roles of y+ and y0 and the two different choices result in two

different topologies for the semi-classical strings in the target space. To make this clearer,

let us define y− to be the smallest positive root of f(y) = 0, and y+ such that the sign

of df
dy

∣∣∣
y+

coincides with that of df
dy

∣∣∣
1
; the remaining root is identified with y0. The graphs

of the function f(y) in various situations are depicted in figure 1. Observing the profile

function f(y) is a degree three curve with f(0) = f(1) = −A2

8B ≤ 0, it follows that only y−
and one of the two other roots lie in the physical range range [0, 1], while the third root is

greater than one. When df
dy

∣∣∣
1

> 0, f(y) is positive for y− < y < y0 (figure 1 (d)), whereas

when df
dy

∣∣∣
1

< 0, f(y) is positive for y− < y < y+ (figure 1 (f)).
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Figure 1: The graphs of the profile function f(y) in the undeformed (a)-(c) and the γ-deformed

cases (d)-(f). The graph (a) represents a folded string with a moduli q = sin2 θ0

2
, folded onto the

interval [−θ0/2, θ0/2] in the θ- (or ψ-)direction. The graph (c) represents the circular string, and

(b) is the critical point where the transition of folded/circular takes place. In the vanishing-γ limit,

(d), (e) and (f) reduce to (a), (b) and (c), respectively.

To visualize the semi-classical strings corresponding to these two different cases, let us

first consider the one with ansätz θ = θ(σ̂) and φ = wt. Such ansätz corresponds to setting

A = 0 so that y− = 0, and the first two equations in (3.9) give y+ = 1 and y0 = q ≡ C+B
2B .

Figure 1 (d) and figure 1 (f) reduce in this limit to figure 1 (a) and figure 1 (c) respectively.

The topology of the semi-classical string is determined by whether C + B cos θ = 0 can

be satisfied by any θ or not, or equivalently whether q ≤ 1 or q > 1. The two cases are

known to be associated with the “folded” (q ≤ 1) and “circular” (q > 1) solutions of the

Neumann integrable system. The half-period of the folded case starts from θ = 0 and goes

to θ = θ0, then back to θ = 0; while in the circular case, the sign of θ′ never changes, θ

can take any values from 0 to π. Instead of folding back to itself, the string completely

winds one of the great circles of S5 passing through θ = 0. One is actually allowed to

generalize the ansätz for the semi-classical string to have φ(t, σ̂) = wt+h(σ̂), such that the

string acquires winding profile in the φ-direction, giving a solution associated with so-called

Neumann-Rosochatius (NR) integrable system, which was investigated in [29] in both by

‘conventional’ and the Landau-Lifshitz approaches.

By contrast, in the deformed background, it is necessary having the ansätz for the

semi-classical string to be φ(t, σ̂) = wt + h(σ̂) as in (3.3) so that equations of motion can

be satisfied. Here the string never reaches θ = 0 nor θ = π due to the presence of nonzero

A2 in (3.6). The solutions should not be regarded as only a naive perturbation for the
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usual solution of the Neumann system; instead, they should in general be treated as a

perturbative solution from that of NR integrable system. Here we can still distinguish two

different classes of solutions, depending whether df
dy

∣∣∣
1

is positive or negative, or equivalently,

y0 < 1 or y0 > 1. Recall that the moduli parameter q ≡ C+B
2B controls the topology of a

classical solution of the Neumann system, then it follows that

df

dy

∣∣∣∣
y=1

{
≤ 0 ⇐⇒ 0 ≤ q ≤ 1

> 0 ⇐⇒ 1 < q
, (3.10)

these turn out to be exactly the conditions for a string of Neumann system to be of folded

(upper) or of circular (lower) type. Therefore, despite slight abuse of the terminology, we

shall borrow from the Neumann situation, and call the case y0 < 1 “folded” string and the

case y0 > 1 “circular” string even in the deformed background with the integrability of the

NR type.

3.2 “Folded” case

Now we turn to the explicit semi-classical string solutions, and let us begin with the folded

case. The conserved sigma model charges such as the z-component of the spin Sz, total

spin J and energy E are calculated as

Sz =
J

4π

∫ 2π

0
dσ̂

∫ 1

0
dρ ∂ρθ sin θ =

J

4π

∫ 2π

0
dσ̂ cos θ , (3.11)

J =
J

2π

∫ 2π

0
dσ̂ , (3.12)

E =
λ

16πJ

∫ 2π

0
dσ̂

(
θ′2 +

(
φ′ + γJ

)2
sin2 θ

)
=

λ

16πJ

∫ 2π

0
dσ̂ (C + B cos θ) , (3.13)

respectively. We used the definition of A and the constraint (3.6) to put the Hamiltonian

into the form above. Let us denote the number of windings along the φ-direction by N ,

and the number of the oscillations in the θ-direction by M , that is the number of times

the semi-classical string traces out the allowed range of θ. Performing the integration for

φ′ using the formula (A.6), we have

2πN =

∫ 2π

0
dσ̂ φ′ = −2πγJ + M

√
y+y0y−
y+ − y−

[
1

y−
Π

(
y0−y

−

−y
−

, q
)

+
1

1 − y−
Π

(
y0−y

−

1−y
−

, q
)]

,

(3.14)

where we defined the elliptic moduli q as

q ≡ y0 − y−
y+ − y−

. (3.15)

The eq. (3.14) relates the parameters y±, y0 and the deformation parameter γJ . Here N

and M need to be integers, as the ansätz describes a physical closed string on the smooth

deformed background. From the viewpoint of the gauge theory, eq. (3.14) corresponds to a

so-called “trace condition” (or “cyclicity condition”) of an associated SYM operator with

now a nonzero twist parameter γJ . If we insist that the solution interpolates to the class
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Figure 2: Profiles of spinning string solutions in NR-system with M/N = 4, projected onto an S2

of Rt × S3. The angles θ0 and θ± are defined such that sin2 θ0

2
= y0 and sin2 θ±

2
= y±. The left and

the right figures are called “folded” and “circular” type in the text, and correspond to, respectively,

(d) and (f) of figure 1.

of semi-classical string solutions in undeformed background, with y+, y− and y0 being 1,

0 and some finite value between 0 and 1, in such limit, the equation (3.14) reduces to

M/N = 2. In other words, for a special case of our solution to reduce the popular folded

strings of Neumann system, we have to start with M/N = 2, then take the limit γ → 0.

In fact, up to this point, our discussion is generally applicable to either folded or circular

string in the deformed background. The same criterion M/N = 2 is needed if our solution

is to interpolate to the popular (elliptic) circular string in the Neumann system with now

y0 > 1.

In more general cases, however, we can have various eccentric versions of folded strings

of NR system without constraint on the integers M and N . As an example, see the left

figure of figure 2 for the M/N = 4 case, whose profile looks just like the trajectories of a

precessing top with a nutation. The right side of figure 2 represents the eccentric version

of a (elliptic) circular string, which will be discussed later.

Let us now focus on N = 1 case, but keeping M arbitrary. The total spin can be

calculated using the integral formula (A.4),

J =
J

2π

∫ y0

y
−

2Mdy√
2B (y+ − y) (y0 − y) (y − y−)

=
JM

π

√
2

B

K(q)√
y+ − y−

. (3.16)

Similarly, the z-component of the spin Sz and the Hamiltonian are given by

Sz =
J

2
− MJ

π

√
2

B

1√
y+ − y−

[y+K(q) − (y+ − y−)E(q)] , (3.17)

E =
λ

16πJ

{
4πB [y+ + 2y− − 1 + q (y+ − y−)] − 4M

√
2B√

y+ − y−
[y+K(q) − (y+ − y−)E(q)]

}
,

(3.18)

where we used the integral formula (A.5). We can eliminate B by using (3.16). Taking into

account that the ratio of J2 to the total spin J = J1 + J2 which we denote α as usual, is
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related to the sum of the third component of the spin as Sz/J = 1
2 −α, the final expression

of α and E for this folded case are then given by

αfold = y+ − (y+ − y−)
E(q)

K(q)
, (3.19)

Efold =
M2λ

2π2J
K(q)

[
E(q) +

(
(q − 1) +

y+ + y− − 1

y+ − y−

)
K(q)

]
. (3.20)

In the vanishing-γ limit where y+ → 1, y− → 0 and y0 → q, we see that (3.19) and (3.20)

indeed recover the expressions for the undeformed case with M = 2 in [13], see figure 1.

Here we shall summarize the counting of free parameters and the constraints of the

system. At first we had three parameters y± and y0 to describe the system, which were

three roots of f(y) = 0. But since there was one condition f(0) = f(1), the number of free

parameters was actually two. One of the degrees of freedom was fixed by giving a set of

integers (M,N) and the deformation parameter γJ through the condition (3.14), and the

other was done by giving the spin-fraction αfold. Then we could write down the energy

Efold in terms of so-determined set of moduli parameters.

Let us see how our parametrization of the solution can be mapped to the one used

in [38] where the folded solution was described in the conventional way, set the following

rotating string ansätz in the original sigma model action (2.15),

t = κτ , ψ = ψ(σ) , ϕi = wiτ + hi(σ) . (3.21)

This is the same ansätz as introduced in [20, 29], which is known to give us a solution for

the NR system. The σ-components of the worldsheet currents are now constants and can

be written as

C1 ≡ J σ
1 = −r2

1G
(
h′

1 + γ̂r2
2w2

)
, C2 ≡ J σ

2 = −r2
2G

(
h′

2 − γ̂r2
1w1

)
, (3.22)

and it is convenient to define effective angular velocities in the deformed background as

Ω1 ≡ w2 − γ̂C1 and Ω2 ≡ w1 + γ̂C2. In terms of these variables, the differential equation

which governs the system can be cast into the following form:

ψ′2 = D − Ω2
21 sin2 ψ − C2

1

cos2 ψ
− C2

2

sin2 ψ
, (3.23)

where D is an arbitrary integration constant and we have defined Ω2
21 ≡ Ω2

2 − Ω2
1. The

Virasoro constraints for the system now takes the forms

κ2 = D + Ω2
1 + γ̂2

(
C2

1 sin2 ψ + C2
2 cos2 ψ + Ω2

1 cos4 ψ sin2 ψ + Ω2
2 cos2 ψ sin4 ψ

)
, (3.24)

0 = Ω1C1 + Ω2C2 . (3.25)

Note that the latter condition (3.25) reduces to a trivial one in the vanishing-γ limit, but

when we have nonzero γ, it turns out to play a key role in realizing the correspondence

between the string and the gauge sides. The classical energy and the spin-fraction can be

described through three parameters x0 and x± defined such that

x++x0+x− = 1+
D

Ω2
21

, x+x0+x0x−+x−x+ =
C2

2 − C2
1 + D

Ω2
21

, x+x0x− =
C2

2

Ω2
21

. (3.26)
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Instead of using x0 and x±, it is more convenient to define a new moduli parameter by

k =
x0 − x−

x+ − x−
, (3.27)

and we will describe the system in terms of x± and k. To obtain a solution to the first

order in the large-spin limit, let us expand all the parameters as k = k(0) + O(
λ

J2

)
, x± =

x
(0)
± + O(

λ

J2

)
and Ci = C

(0)
i + O(

λ

J2

)
, in which case the Virasoro constraint (3.25) implies

C
(0)
1 + C

(0)
2 = 0. Setting χ ≡ C

(0)
1 = −C

(0)
2 , we see the relations (3.26) then reduce to

x
(0)
+ +x

(0)
0 +x

(0)
− = 1+

D

Ω
(0)
21

2
, x

(0)
+ x

(0)
0 +x

(0)
0 x

(0)
− +x

(0)
− x

(0)
+ =

D

Ω
(0)
21

2
, x

(0)
+ x

(0)
0 x

(0)
− =

χ2

Ω
(0)
21

2
,

(3.28)

with Ω
(0)
21 = 2

πK
(
k(0)

)√
x

(0)
+ − x

(0)
− . Here we see the two elliptic systems derived from two

distinct approaches, (3.9) and (3.28), can be identified with each other, under the following

identifications of the parameters:

B ≡ 2Ω
(0)
21

2 , C + B ≡ 4D , A2 ≡ 16χ2 . (3.29)

The identification (3.29) implies further mapping of the parameters, x
(0)
± ≡ y± and k(0) ≡ q,

they allow us to rewrite (3.19) and (3.20) in terms of x
(0)
± and k(0). Setting M = 2, the

final expressions precisely reproduce eqs. (4.32) and (4.30) in [38],

α̃fold = x
(0)
+ −

(
x

(0)
+ − x

(0)
−

) E
(
k(0)

)

K
(
k(0)

) , (3.30)

ε
(1)
fold =

2

π2
K

(
k(0)

)
[
E

(
k(0)

)
−

(
1 − k(0)

)
K

(
k(0)

)
+

x
(0)
+ + x

(0)
− − 1

x
(0)
+ − x

(0)
−

K
(
k(0)

)
]

, (3.31)

where α̃fold is the filling ratio and ε
(1)
fold is the coefficient of the order λ

J -term in the power

series expansion of the energy.

3.3 “Circular” case

An elliptic circular string solution can be obtained in a similar way as in the folded case.

Consider again the N = 1 case. For the circular case we have a moduli parameter y0

greater than y+, and the only difference from the folded case is the range of integration,

we have to change from
∫ y0

y
−

to
∫ y+

y
−

. The total spin is given by

J =
J

2π

∫ y+

y
−

2Mdy√
2B (y+ − y) (y0 − y) (y − y−)

=
JM

π

√
2

B

K(1/q)√
y0 − y−

. (3.32)

We can use the condition above to express B in terms of other parameters and give us

αcirc = y0 − (y0 − y−)
E(1/q)

K(1/q)
, (3.33)

Ecirc =
M2λ

2π2J
K(1/q)

[
E(1/q) +

y+ + y− − 1

q (y+ − y−)
K(1/q)

]
, (3.34)
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for the spin-fraction and the energy of the circular string. We can also derive the same

quantities using the power series expansions, this is done in much the similar way as in the

folded case, and we only need to care the range of where the integration constant D sits

in. The expression for the energy and the spin-fraction are given by,

α̃circ = x
(0)
0 −

(
x

(0)
0 − x

(0)
−

)
[

E
(
1/k(0)

)

K
(
1/k(0)

)
]

. (3.35)

ε
(1)
circ =

2

π2
K

(
1/k(0)

)
[
E

(
1/k(0)

)
+

(x
(0)
+ + x

(0)
− − 1)

k(0)
(
x

(0)
+ − x

(0)
−

) K
(
1/k(0)

)
]

. (3.36)

Comparing these with the Landau-Lifshitz approach, again they coincide with the same

identifications as in the folded string case, and the counting of free parameters and the

constraints is just the same as the folded case. Turing off A, the known expressions for

the circular solution of the Neumann system is recovered. Indeed, the reader can check

the “folded” and the “circular” solutions in the deformed background posses a interesting

property, they are related to each other via an analytic continuation with respect to the

elliptic moduli q, just as was presented in [45] for the undeformed case.

Finally, taking the rational limit in the elliptic circular case amounts to sending q to

∞, we have E → M2λ
8J , which corresponds to the “half-filling” limit (αcirc → 1/2) of the

(rational) circular solution calculated in [34].

4. Comparison with twisted spin-chain analysis

In this section we shall discuss the gauge theory dual to the semi-classical strings in the

Lunin-Maldacena background, and explicitly perform the twisted spin chain analysis.

We first present our results for the one-loop anomalous dimensions calculated from

the Bethe ansätz, demonstrate how the idea of an analytic continuation can be used in

deriving the results for the circular string, based on the existing double contour calculation

associated with the folded string in [38]. As in the undeformed case, the double contour

solution in [38] is strictly valid for even number of the Bethe roots, that is, even number of

impurities, while the circular string case should be associated with odd number of Bethe

roots.

To complement our results on the string sigma model side and complete the analysis

of the duality for the γ-deformed theories, we will present a detailed discussion on the

distributions of Bethe roots, explicitly propose the ansätze, from which we can calculate

the one-loop anomalous dimensions for the operators associated with the semi-classical

string in deformed background. Remarkably, the parameters describing the endpoints of

the Bethe strings will have nice interpretations in terms of the string moduli parameters.

In order to make this note self-contained, in a separate appendix, we shall collect

some key formulae for the twisted spin chain analysis and outline how one can obtain the

associated Riemann-Hilbert problem in certain scaling limit.
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4.1 “Double contour” case

Let us first discuss the “double contour” case. In [38], a general double contour solution

for the twisted spin chain was presented, where the two cuts are located at C+ ≡ [x1, x2]

and C− ≡ [x3, x4] and the solution was shown to reproduce the energy of the folded string

solution in the Lunin-Maldacena background. This should be regarded as a γ-deformed

version of the usual double contour solution. Here we briefly review the key results. The A-

and the B-cycle conditions (B.9) for the deformed double contour case become as follows:

0 =

∮

A

dp = 2i

∫ x1

x2

F (x)dx√
(x1 − x) (x − x2) (x − x3) (x − x4)

, (4.1)

4πn =

∮

B

dp = 2

∫ x3

x2

F (x)dx√
(x1 − x) (x2 − x) (x − x3) (x − x4)

, (4.2)

where F (x) is a rational function. The resulting expression for the filling-fraction and

one-loop anomalous dimension are (here ‘DC’ stands for ‘double contour’)

αDC =
1

2
− x1x2 + x3x4

4
√

x1x2x3x4
+

(x1 − x3) (x2 − x4)

4
√

x1x2x3x4

E
(

(x1−x2)(x3−x4)
(x1−x3)(x2−x4)

)

K
(

(x1−x2)(x3−x4)
(x1−x3)(x2−x4)

)

=
1

2
− x1x2 + x3x4

4
√

x1x2x3x4
+

(x1 − x4) (x2 − x3)

4
√

x1x2x3x4

E
(

(x1−x2)(x3−x4)
(x2−x3)(x4−x1)

)

K
(

(x1−x2)(x3−x4)
(x2−x3)(x4−x1)

) , (4.3)

γDC =
n2

32π2

(
1

x2
− 1

x4

)(
1

x1
− 1

x3

) E
(

(x1−x2)(x3−x4)
(x1−x3)(x2−x4)

)

K
(

(x1−x2)(x3−x4)
(x1−x3)(x2−x4)

)

− n2

128π2

[(
1

x1
+

1

x2

)
−

(
1

x3
+

1

x4

)]2

. (4.4)

Along with the idea held in [38] and the identifications between {y±, y0, q} and

{x(0)
± , x

(0)
0 , k(0)}, we can now have the following natural identifications relating the mod-

uli on both spin-chain and string sides in order to realize the duality, which follows from

comparing (3.19) and (4.3):

y+ =
1

2
− x1x2 + x3x4

4
√

x1x2x3x4
, y− =

1

2
− x1x3 + x2x4

4
√

x1x2x3x4
,

y0 =
1

2
− x1x4 + x2x3

4
√

x1x2x3x4
, q = −(x1 − x2) (x3 − x4)

(x1 − x4) (x2 − x3)
. (4.5)

Using these identifications, we can rewrite the anomalous dimensions (4.4) and the string

energies (3.20) as

γDC =
2n2

π2
K(q) [E(q) − (1 − q)K(q)] − n2

128π2

[(
1

x1
+

1

x4

)
−

(
1

x2
+

1

x3

)]2

, (4.6)

and

Efold =
M2

2π2
K(q) [E(q) − (1 − q)K(q)] +

M2

128π2

(
1

x1
+

1

x4

)(
1

x2
+

1

x3

)
. (4.7)
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For the two quantities above to be matched, in addition to n = M/2, the following condition

is required:

−
[(

1

x1
+

1

x4

)
−

(
1

x2
+

1

x3

)]2

= 4

(
1

x1
+

1

x4

)(
1

x2
+

1

x3

)

⇒
4∑

k=1

1

xk
= 0 , (4.8)

which solves one of the lowest order Virasoro constraints on the string side, C
(0)
1 +C

(0)
2 = 0

to be specific [38].

4.2 “Imaginary root” case

Given the double contour solution corresponding to folded string in Lunin-Maldacena back-

ground, we can easily move on obtaining the solution for its circular counterpart, this is the

γ-deformed version of so-called “imaginary root solution” where all odd number of roots

(before the scaling limit) lie on the imaginary axis. Recall the analysis for this class of

solutions in the undeformed background [8, 13, 21], here we do not have moding ambigu-

ity, n = 0 always; there are some odd number of Bethe roots congregate around the origin

forming a constant density region (in the scaling limit they form a so-called “condensate”),

the remaining roots spread out on the either end of the constant density region. The Bethe

string we have are two non-constant regions of equal length symmetrical under reflection

about the real axis, joined by a constant region going through the origin. It is important

to realize that despite the fact that all the roots lie on one continuous distribution, the

presence of the constant condensate allows us to turn the situation into a two-cut problem

again. Indeed as indicated in [24], what one needs to do to relate the two-cut solutions for

folded and circular is simply exchanging the role of the mode number n and the condensate

density m, or exchanging the A- and B-cycles.

Repeating the same analysis for the twisted spin chain as in [38] for the circular case,

what is different from the undeformed case is that the condensate no longer congregate

around origin but 2πγJ , the symmetry about the imaginary axis is again broken. However

we still have two regions of non-constant Bethe roots density joined by a region of constant

condensate. As it turns out in this case, (more in section 4.3), we only have to exchange

x2 and x3 to obtain the solution for this system, so the A- and B-cycle conditions (B.9)

become, respectively,

2πm =

∮

A

dp = 2i

∫ x1

x3

F (x)dx√
(x1 − x) (x − x3) (x − x2) (x − x4)

, (4.9)

0 =

∮

B

dp = 2

∫ x3

x2

F (x)dx√
(x1 − x) (x3 − x) (x − x2) (x − x4)

, (4.10)

and the filling-fraction and the one-loop anomalous dimension are given by (here ‘IR’ stands

for ‘imaginary root’)

αIR =
1

2
− x1x4 + x2x3

4
√

x1x2x3x4
− (x1 − x3) (x2 − x4)

4
√

x1x2x3x4

E
(

(x2−x3)(x1−x4)
(x1−x3)(x2−x4)

)

K
(

(x2−x3)(x1−x4)
(x1−x3)(x2−x4)

)
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=
1

2
− x1x4 + x2x3

4
√

x1x2x3x4
− (x1 − x2) (x3 − x4)

4
√

x1x2x3x4

E
(

(x2−x3)(x4−x1)
(x1−x2)(x3−x4)

)

K
(

(x2−x3)(x4−x1)
(x1−x2)(x3−x4)

) , (4.11)

γIR =
m2

128π2

(
1

x4
− 1

x2

)(
1

x1
− 1

x3

) E
(

(x1−x4)(x2−x3)
(x1−x3)(x2−x4)

)

K
(

(x1−x4)(x2−x3)
(x1−x3)(x2−x4)

)

− m2

512π2

[(
1

x1
+

1

x4

)
−

(
1

x2
+

1

x3

)]2

, (4.12)

where the integer m represents the density of condensate in the deformed case. From (3.33)

and (4.11), we can see that the identifications (4.5) still hold for the circular case. Let us

rewrite (4.12) and (3.34) as

γIR =
m2

2π2
E(1/q)K(1/q) − m2

512π2

[(
1

x1
+

1

x4

)
−

(
1

x2
+

1

x3

)]2

. (4.13)

and

Ecirc =
M2

2π2
K(1/q)E(1/q) +

M2

128π2

(
1

x1
+

1

x4

)(
1

x2
+

1

x3

)
, (4.14)

once again, upon imposing the Virasoro constraint (4.8) and this time with m = M , we

see they indeed match up.

4.3 The outlines of Bethe strings

Analyzing the actual distribution of Bethe roots in the complex plane generally requires

a numerical computation. Nevertheless, once we take the scaling limit and reduce the

problem of solving Bethe equations to a certain Riemann-Hilbert type problem, in principle,

we can calculate the locations of the branch-points of the cuts from the given filling-fractions

for each cut and the periods of cycles. However, in practice this is usually a very involved

problem. Here we instead discuss some plausible ansätz on how the roots would distribute

and form Bethe strings in the scaling limit, our aim here is to illustrate these ansätze and

complement our analysis in the previous subsections.

Consider the following ansätz on the locations of the endpoints for the γ-deformed

version of “double contour” distribution, which we claim to be dual to the “folded” string

in the deformed background with NR integrability:

x1 = iρ e−i(α+ξ) , x2 = x∗
1 , x3 = −x2

ρ
e−iξ , x4 = x∗

3 , (4.15)

where ρ is a real number greater than one, and the star (∗) represents the complex con-

jugation. The plot of this ansätz is in the left diagram of figure 3. The angles α (not

to be confused with the filling-fraction) and ξ are so drawn that they obey the relation

ρ sin α = sin (α + ξ). We can easily check the Virasoro condition (4.8) is satisfied within

the ansätz (4.15). This ansätz is also compatible with the so-called “reality constraint”

which says the locations of the endpoints of the Bethe strings must be symmetrical about

the real axis [24].
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Figure 3: The ansätze for the outlines of Bethe string in the scaling limit. The left figure is for

the γ-deformed version of a “double contour” solution and the right for the deformed “imaginary

root” solution. In the latter case, the dotted line joining x2 and x3 represents the “condensate”.

In the limit of vanishing γ where ξ → 0, we see the constraint ρ sin α = sin (α + ξ)

requires ρ → 1, and it is assumed that α goes to some finite value α0 to recover the

symmetric two-cut distribution of the undeformed case. If we denote the two cuts in the

undeformed case as ±[a, b] and assume x1 → a and x2 → b, it means a/b = e2iα0 is satisfied.

Even for the γ-deformed case, we can apply the trick of solving this system for the

negative filling ratio as in [8], this amounts to rotating the two cuts to the real axis. This

useful trick allows us in the scaling limit, to neglect the actual shapes of the cuts but only

care about the end-points, we end up with the two asymmetrical cuts on real axis used

in [38].

Using the identification (4.5), we can rewrite the moduli parameters y0 and y± on the

string side in terms of the end points on the spin chain side and obtain

y+ =
1

2
+

1

4

(
ρ +

1

ρ

)
, y− =

1

2
− 1

2
cos ξ , y0 =

1

2
+

1

2
cos (2α + ξ) . (4.16)

We can see they indeed satisfy 0 < y− < y0 < 1 < y+, corresponding to (c) of figure 1.

Comparing these with the definitions of θ− and θ0 that determines the range of oscillation

for the folded string, we can deduce θ− ≡ ξ and θ0 ≡ π − (2α + ξ). We also see the short-

string limit where both θ− and θ0 tend to zero indeed corresponds to the short Bethe-string

limit of α → π/2 and ξ → 0, showing this ansätz has a smooth BMN limit.

Next let us turn to the case of the γ-deformed version of “imaginary root” solution.

Again imposing the reality constraint, we propose the following ansätz:

x1 = iµ ei(β+η) , x2 = −x1

µ
e−iη , x3 = x∗

2 , x4 = x∗
1 . (4.17)

This is illustrated in the right diagram of figure 3 with condensates located between x2

and x3. Here µ is a real number greater than one, and β and η satisfy the relation
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µ sin β = sin (β + η) as can be seen from figure 3, so that the Virasoro condition (4.8) is

satisfied. In the limit of vanishing γ, both η and β tend to zero simultaneously, while µ

goes to some finite value µ0, which can be written as µ0 ≡ t/s with the two cuts located

in the range ±[is, it]. To obtain the filling-fraction and the spin-chain energy, it is again

convenient to apply the same trick as in the double contour solution, and rotate the entire

continuous curve to the real axis, similar calculations then give (4.11) and (4.12). The

moduli for the circular string in the deformed background can be written as

y+ =
1

2
+

1

2
cos (2β + η) , y− =

1

2
− 1

2
cos η , y0 =

1

2
+

1

4

(
µ +

1

µ

)
, (4.18)

which satisfies 0 < y− < y+ < 1 < y0, corresponding to (f) of figure 1 and reduce to (c) of

figure 1 in the vanishing-γ limit.

Finally let us consider the rational limit. In this limit, the filling-fraction tends to 1
2

(i.e., “half-filling”), and the outer two of the four branch-points, x1 and x4, go to infinity

and reduce the two-cut problem to the one-cut, with inner two, x2 and x3 remaining at

finite distance from the origin. In view of (4.18), the rational limit µ → ∞ means sending y0

to ∞ on the string side, and thus we reproduce the observation made earlier. This limit also

imply the vanishing of angle β, which we can see from the constraint µ sinβ = sin (β + η),

hence the inner two branch-points in fact approach the imaginary axis, namely at ±i/(mπ).

One can see there is no BMN limit in this circular case.

5. Summary and outlook

In this paper we presented further corroborative evidences for the spin-chain/spinning-

string duality in the Lunin-Maldacena background whose gauge theory dual is the Leigh-

Strassler deformation of N = 4 SYM. We restricted ourselves to the case of real deformation

parameter γ on both sides of the correspondence. On the string sigma model side, we con-

sidered the large-spin limit of the SU(2)γ sector and demonstrated how the Landau-Lifshitz

action can be obtained for this sector. The Landau-Lifshitz action was shown to agree with

the coherent state path integral of the twisted Heisenberg spin-chain Hamiltonian associ-

ated with the SU(2)γ sector of the gauge side, reproducing the observation made in [34].

We then made it clear that, in the Lunin-Maldacena background, spinning string

solutions cannot arise from the well-known Neumann system, instead they should be the

solutions to the more general NR system. Other than usual rotating motions, the strings

generally also extend in the directions associated with the two of the U(1) × U(1) × U(1)

Cartan subgroup of the SU(4) R-symmetry group for N = 4 SYM, which is preserved

under the deformation. Analogous to the case of the Neumann integrable system in the

undeformed background, we showed that there are two kinds of solitonic solutions allowed

in the Lunin-Maldacena background, and the energy-spin relation in the large spin limit

were calculated for both cases. These solutions typically had the profiles like figure 2, and

for specific choices of the winding and oscillating numbers, they were shown to reduce to an

eccentric version of folded or circular solutions of the usual Neumann system. The folded

solution of this special case turned out to be the one obtained in [38].
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From the spin chain side, the γ-deformed version of the “imaginary root” solution was

analyzed as its counterpart of the deformed “double contour” solution studied in [38]. The

filling-fractions and the anomalous dimensions for both cases were calculated and were

shown to be related via certain analytical continuation. Furthermore, we proposed explicit

ansätze for the distributions of Bethe roots, both for the deformed versions of double

contour and imaginary root solutions. The endpoints of cuts were shown to be compatible

with the necessary conditions such as reality condition, and to have the expected behaviors

in various limits. Remarkably, the moduli parametrizing the spinning string solutions

in Lunin-Maldacena background were identified with the geometrical quantities in the

associated Bethe string ansätz. These identifications allowed us to explicitly demonstrate

the exact matching between the string energies and the one-loop anomalous dimensions

calculated from the twisted spin chain.

Here we outline few possible interesting extensions.

It would be interesting to investigate the matching of higher conserved charge from

both sides of the correspondence in the deformed set-up, following the work of [21 – 23],

and we hope to report more on this in the near future [46].

It would be also interesting to extend our results to the case of larger symmetry groups.

The duality between the SU(3)γ sectors of both string and gauge theory was examined and

a quite non-trivial agreement at the level of effective actions was achieved [47]. With

the possible help of the explicit solutions to these two approaches, i.e. the Bethe ansätz

technique and the Landau-Lifshitz approach, we will be able to perform more explicit

non-trivial tests to their correspondence in the deformed background.

Extension to the higher-loop cases, that is higher order in the effective coupling λ
J2 , can

also be meaningful. The Landau-Lifshitz reduced action for the complex β-deformed SU(2)

sector at the two-loop level was explicitly presented in [34], so in principle the problem of

computing conserved charges would be accessible. Moreover, it would also be interesting,

albeit potentially difficult, to come up with a deformed version of two-loop spin chain and

modified ansätz as in [18]. The combination of these results should lead to the highly

non-trivial explicit matchings of the higher conserved charges at two-loop order (c.f. [22]),

we shall also explore this in future.

Finally, it is also important to study the finite-size (subleading in 1/J-expansion) cor-

rections to the energy/anomalous-dimension in the context of deformed theories. This line

of study has been partly carried out in [34] for the case of rational circular solutions and

the agreement including the subleading order has been shown. For the elliptic solutions,

however, the problem of calculating the 1/J-corrections does not seem easy even in the un-

deformed case, and the problem of checking the duality including this finite-size corrections

remains a challenging task.
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A. Complete elliptic integrals

Our convention for the complete elliptic integrals of the first, second and third kind are as

follows:

K(r) ≡
∫ 1

0

dx√
(1 − x2) (1 − rx2)

=

∫ π/2

0

dϕ√
1 − r sin2 ϕ

, (A.1)

E(r) ≡
∫ 1

0
dx

√
1 − rx2

1 − x2
=

∫ π/2

0
dϕ

√
1 − r sin2 ϕ , (A.2)

Π(q, r) ≡
∫ 1

0

dx

(1 − qx2)
√

(1 − x2) (1 − rx2)
=

∫ π/2

0

dϕ
(
1 − q sin2 ϕ

) √
1 − r sin2 ϕ

. (A.3)

The integral formulae for a > b > c listed below are useful in the calculation in the main

text:
∫ b

c

dx√
(a − x) (b − x) (x − c)

=
2√

a − c
K

(
b−c
a−c

)
, (A.4)

∫ b

c

xdx√
(a − x) (b − x) (x − c)

=
2a√
a − c

K
(

b−c
a−c

)
− 2

√
a − cE

(
b−c
a−c

)
, (A.5)

∫ b

c

dx

x
√

(a − x) (b − x) (x − c)
=

2

c
√

a − c
Π

(
− b−c

c , b−c
a−c

)
. (A.6)

B. The Riemann-Hilbert problem for twisted spin-chain

In this appendix, we will make a brief review on some relevant aspects of the Riemann-

Hilbert problem associated with the field theory. In [34], the analysis of the complex β-

deformed SU(2) sector was performed for a generic case at the two-loop level in λ. Below

we will summarize the results of [34], restricting ourselves to the real part of β denoted as

γ. For details, see the earlier works [34, 38] and the references therein.

For the SU(2)γ sector of gauge theory in the scaling limit, the problem of solving a set

of Bethe equations becomes a particular Riemann-Hilbert problem with two cuts on the

associated Riemann surface. The anomalous dimension (or the energy of the spin-chain

system) can be described by the periods of two cycles and some suitably defined elliptic

moduli. As we mentioned in the main text, we assume J ≡ J1 + J2 and J1,2 large, while

γJ stays finite.

We shall concentrate on the situation where the two cuts C± have shifted mode numbers

n± ≡ ±n + γJ respectively, where n is an integer, and there is a “condensate” of density

m = m̃+γM between them. Here m̃ can be regarded as the non-integer valued condensate

density in the undeformed background, so that combined with γM , we obtain the physical

integer valued condensate density m in the deformed background. The integers n and m

are related to the so-called A- and B-cycles of the two-cut problem, and one of the most
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important features in this γ-deformed theory is that the effect of the deformation only

results in the shifts of the periods of each cycle [34].

Let us denote the number of Bethe roots as M ≡ J2, and introduce the filling fraction

α = M/J . As usual, define the resolvent as

G(x) ≡ 1

J

M∑

j=1

1

x − xj
. (B.1)

Furthermore, we can introduce the quasi-momentum p(x), which is related to the resolvent

as

p(x) = G(x) − 1

2x
, (B.2)

so that the “twisted” Bethe equation can be rewritten in the form,

p(x + iε) + p(x − iε) = 2πn± , x ∈ C± . (B.3)

The momentum condition can also be written as

−
∮

C+ ∪C
−

dx

2πi

G(x)

x
= 2πm (B.4)

with the condensate density. We can see the equations (B.3) and (B.4) have exactly the

same structures as in the original N = 4 case, and the only difference is the shifts of

numbers such that ±n 7→ n± = ±n + γJ and m̃ 7→ m = m̃ + γM .

Following [24, 38, 45], we now introduce the genus one Riemann surface by the following

elliptic curve,

y2 =

4∏

k=1

(x − xk) = x4 + c1x
3 + c2x

2 + c3x + c4 , (B.5)

which is endowed with a meromorphic differential dp(x) of the form

dp(x) =
dx√∏4

k=1 (x − xk)

∑

k=−1,0,1

akx
k−1 . (B.6)

By demanding dp(x) = dx
2x2 + O(1) as x → 0, we can easily determine the coefficients a−1

and a0 as

a−1 =
1

2

√
c4 =

1

2

√√√√
4∏

k=1

xk , a0 =
c3

4
√

c4
= −1

4

√√√√
4∏

k=1

xk

(
4∑

k=1

1

xk

)
. (B.7)

whereas a1 can be fixed by the normalization condition as

a1 =
1

2
− α . (B.8)

The periods for the so-called A- and B-cycles are given by integer valued n and m,
∮

A

dp = 2πm and

∮

B

dp = 2π (n+ − n−) = 4πn . (B.9)
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Note that the B-period is not affected by the deformation, since it is given by the difference

of two numbers n±, which are equally shifted by the deformation [34]. For the deformed

double contour case, we set m = 0 whereas for the deformed imaginary root case n = 0,

and the (n,m) = (1, 0) case was studied in [38].

Finally let us summarize the counting of free parameters and the constraints in the

system. At first there seems to be four complex parameters x1, . . . , x4 and one real pa-

rameter a1 to be fixed. But in light of the so-called “reality constraint” [24] as well as the

Bethe equation p(∞+) − p(∞−) = 2πn+ (where ∞± are two points at infinity for each

sheet of the Riemann surface), we are left with four real degrees of freedom. These can

be fixed by the A- and the B-cycle conditions (B.9), and giving the filling fractions α± for

each cut C±, which read α+ = α− = α/2 in our case.
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